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Abstract

We build on a previous statistical model for distributed systems and for-

mulate it in a way that the deterministic and stochastic processes within the

system are clearly separable. We show how internal fluctuations can be anal-

ysed in a systematic way using Van Kanpen’s expansion method for Markov

processes. We present some results for both stationary and time-dependent

states. Our approach allows the effect of fluctuations to be explored, partic-

ularly in finite systems where such processes assume increasing importance.

1 Introduction

With the increasing complexity of telecommunication and computational systems,
an urgent requirement is developing for theoretical frameworks for addressing basic
principles of distributed systems [1]. At present there is insufficient understanding of
principles required to predict performance, to explain behaviour and to establish de-
sign methodologies [2]. The substantial vacuum in theoretical bases for distributed
communication and computational systems stems largely from the historical preoc-
cupation of computer and telecommunication science with uniprocessor systems [3].

The emergence of large decentralised systems is giving rise to the need for a
general theoretic guide to the behaviour of large collections of locally controlled,
asynchronous and concurrent processes interacting with an unpredictable environ-
ment. In particular this requires understanding the relation between the overall
behaviour of the distributed system and that of its constituents, whose decisions
are based upon local, imperfect, delayed and conflicting information. In many other
systems, particularly in nature and societies, distributed systems with very complex
behaviour and modes of operation have evolved. There is a growing awareness that
many of the theoretical tools which have been developed with considerable suc-
cess to describe distributed systems in physics [4], particularly in condensed matter
physics, may be exploited in other fields, such as biology and economics [5] [6] [7] [8].
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2 The Model

A central feature of open systems is the non-linear nature of their dynamics, which
gives rise to a rich repertoire of behavioural regimes ranging from stable equilib-
rium to oscillations and chaotic states. One has to construct a model which inte-
grates both the deterministic evolution equation, responsible for the macroscopic
behaviour of the system, and the stochastic part which deals with fluctuations
within the system.

A model was formulated for describing a self-organising open computational
system with resources, free agents and pay-off mediated interactions [9] that builds
on as well as overcomes the limitations inherent in previous work [10] [11].

Our approach allows the effects of fluctuations to be investigated systematically
in the form of a large-system size expansion due to Van Kampen [12] [13]. Figure 1
shows an outline of the model; after writing down a probabilistic evolution equation
for a general agent-resource system, we interpret the master equation obtained as
describing a Markovian jump process and go on to apply Van Kampen’s system size
expansion. The deterministic equation for the behaviour of the system arises as the
lowest-order term in the expansion and coincides with the mean-field equation of
Kephart et al. [11]. The main contribution of the fluctuations comes in the form of
a linear Fokker-Planck equation (FPE). Up to this order the noise in the system is
linear and the solution of the master equation is given by a Gaussian distribution.
Non-linear effects of fluctuations are calculated as small perturbations to the linear
noise approximation. A detailed derivation of the equations in Fig. 1 can be found
in Ref. [9]. In the following section some results for a two resource system in
both stationary and time-dependent states are presented and discussed. Section 4
summarises the main points and indicates directions for further work.

3 Results and discussion

Our main objective is to investigate the approximation scheme for fluctuations
based on the large system size expansion of Van Kampen. The one-step Markovian
formulation of the problem allows us, in particular, to calculate the exact probability
distribution for time-independent solutions (see eq. (12) in [9]). We shall begin
by restricting our numerical calculations to stationary solutions of the system in
order to make a direct comparison with exact results and test the validity of the
approximation over a range of parameter values.

The function ρ represents the probability that an agent in the system will find
resource 1 to be more attractive than resource 2. In general, the exact form of ρ

is not known and will depend on several features of the problem at hand, such as
incomplete, uncertain or delayed information about the available resources. As a
first example, we make ρ a function of the payoffs G1 and G2 for using resources 1
and 2 respectively (as in [11]),

G1 = 7 − f1 and G2 = 7 − 3f2 (1)

These pay-off functions model a simple competitive behaviour (opposing gradients)
between agents so that the payoff for using each resource decreases with the number
of agents already using the same resource. The system reaches a stability point
when the two pay-offs are equal so agents will prefer staying with the resource
they are using. For G1 and G2 given in (1) this optimal behaviour of the system
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The master equation

The large system-size expansion

The deterministic evolution equation

The linear Fokker-Planck approximation

First non-linear fluctuation corrections

Figure 1: Main steps in the analysis of the proposed model for an agent-resource
system

occurs for f = 0.75, that is, 75% of all agents using resource 1. The decision
region can be made less sharply defined by introducing an uncertainty element in
the payoff evaluation. This can be achieved by introducing Gaussian noise with
standard deviation σ around the true value of the pay-off. If we assume that the
agents’ perception of each resource is different, then there will be one uncertainty
parameter for each resource, σ1 and σ2. The resulting transition probability ρ is
given by,

ρ =
1

2

[

1 + erf

(

G1 − G2
√

2
√

σ2

1
+ σ2

2

)]

(2)

and shown in Figure 2 for σ1 = σ2 = 0.125. The two limiting cases of σ1 =
σ2 = 0 and σ1,2 = ∞ correspond respectively to perfect knowledge (f = 0.75)
and complete lack of information on pay-offs, leading to the uniform distribution
of agents (f = 0.5). By approximating f with its deterministic contribution φ, we
obtain a graphical solution of the deterministic equation (ρ(φ) = φ) represented in
Figure 2 by the crossing point between the curves ρ(φ) and φ. This point gives
the equilibrium solution which now, due to a non-zero value of the uncertainty, is
slightly offset from the optimal value f = 0.75. The macroscopic value of f for
σ1 = σ2 = 0.125 is φ = 0.724.

In order to see how the Van Kampen approximation depends on the uncertainty
parameters, we have plotted the time-independent probability distributions for dif-
ferent orders in the approximation as well as the exact distribution, for three values
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Figure 2: The transition probability (from resource 2 to resource 1) ρ(f) correspond-
ing to the pay-offs given in equ. (1), for two values of the uncertainty parameter
σ = σ1 = σ2. The intersection with the line ρ = f gives the solution to the
time-independent macroscopic equation.

of σ = σ1 = σ2 (vertically) and three values of the number of agents N (horizon-
tally) in Figure 3. We can draw the following conclusions: The approximation works
reasonably well for all values of σ considered; the first order non-linear corrections
are sufficient for correctly estimating fluctuation effects in the system, especially
if the uncertainty parameter is not too small. Furthermore it seems that the ap-
proximation is best suited for systems with a moderate value of the uncertainty
parameter σ(≈ 0.5), where non-linear effects of fluctuations, although significant,
converge rapidly in the expansion. This may be the range of σ to look for in real-
istic systems, where agents are neither expected to have perfect knowledge nor be
completely ignorant about the pay-offs of their transactions.

So far in our analysis we have only looked at systems with a single macro-
scopic stable behaviour, a consequence of the unique (stable) fixed point occuring
at the intersection between the linear pay-off functions G1 and G2. This simple
competitive behaviour can be changed by making the pay-off functions non-linear,
ie. introducing cooperation as well as competition between agents in the system.
Whereas competition meant that agents would favour a resource if it had less agents
using it, cooperation is expressed by an increased pay-off when a resource is used
by more agents. The interplay of these two tendencies through non-linear pay-offs
leads to a richer range of possible behaviours in the system. We treat here the ex-
ample of a bistable system (arising from cubic pay-offs) (see Figure 4). Depending
on which side of the mid-point the initial distribution is, the system will eventu-
ally settle in one of the macroscopic states characterised by the two peaks in the
time-independent probability distribution.

The system’s dynamics depends notably on the different values of the uncertainty
parameters σ1 and σ2. In Figure 4 we have shown the dependence on σ1 for four
different values of σ2, using the non-linear (cubic) pay-offs. By increasing σ1, σ2

or both, the two peaks are seen to gradually get closer to each other and merge
into a single (symmetric) peak. These critical values of σ1 and σ2 can be found
by inspection of the time-independent macroscopic equation; they play the role
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Figure 3: The time-independent probability distribution for three different values
of N and three different values of σ = σ1 = σ2, in three orders of the large system-
size expansion; full line: mean-field (including linear noise) result, long dash: first
order non-linear corrections included, long dash-short dash: second order non-linear
corrections included, short dash: exact solution.

of control parameters which can change qualitatively the dynamical phase space
of the system, in this case from a system with two attractors to a system with a
single one. This is reminiscent to phase transitions in physical systems such as the
spontaneous magnetisation of a ferromagnetic system which happens by lowering the
temperature below a critical value (Curie temperature). Above this value the overall
magnetisation is zero and symmetric while below it there are two possible states
of opposite magnetisation. By choosing one state or the other, the system breaks
its spatial symmetry, just like by decreasing σ1 or σ2 below their critical values in
the agent-resource system we see a sudden transition from an equal distribution of
agents on the two resources to a definite bias towards one or the other.

Time-dependent solution

So far we have described results derived from the time-independent simplification
of the model [9]. In order to extend our simulations to account for time-dependent
behaviour we began by studying the evolution of a system with two resources and a
number of agents 10 < N < 50. We used the deterministic equation (see Figure 1)
with the linear pay-offs as in (1). Each pay-off is described by a linear equation in
the percentage of occupancy f of resource 1 (bear in mind that the system is closed,
thus f2 = 1 − f) as,

G1 = af + b and G2 = cf + d (3)

If we start from an intial distribution f , which will depend on σ1 and σ2, the less-
dominant resource (G2) mutates (increases) its slope and intercept proportionally
to ∆f = f −0.5. In order to constrain the system we postulate that these increases
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Figure 4: Effect of the uncertainty parameters σ1 and σ2 on a bistable system.

are equally matched by the decreases in slope and intercept for resource 1,

G2 = (c + ∆c)f + (d + ∆d) and G1 = (a − ∆c)f + (b − ∆d) (4)

where,
∆c = γ∆f + δ and ∆d = α∆f + β (5)

each has two contributions: one depending on how badly they are loosing to the
competing resource and another random component introducing noise. For simplic-
ity we have adopted α = γ and δ = β.

The competing process goes as follows: the deterministic equation gives an initial
distribution f that allows each resource to calculate how much they have to mutate
their pay-offs to become more attractive to the agents. The new pay-offs are re-
introduced, together with σ1 and σ2, to calculate the new probability ρ which is
used to solve the deterministic and the fluctuations equations simultaneously.

As in biology, the rate at which mutations happen is fundamental to achieving
an evolutionary improvement. In this simple case we have observed that after a
mutation, and whichever initial configuration we start from, equilibrium is always
reached after 2 units of time. This is of the order of the relaxation time of the evo-
lution equations. In Figure 5 we show the evolution of a system with two resources
with pay-offs as in (1), with σ1 = σ2 ≈ 0 and a relaxation of 2 units of time. The
simulation starts from resource 1 having its maximum of probability centered on
73% of the number of agents. At t = 5 resource 2 has pulled back and is winning
more than half of the agents, while at t = 10 the situation goes back to a balance
(50%). After this point the simulation is dominated by the noise introduced by the
β and δ values (see (5)).
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Figure 5: Evolution in a competitive system with linear pay-offs

4 Conclusions

We have studied a model for market-like agent-resource systems, whose formulation
is based on one-step Markov processes and the large system-size expansion of the
master equation due to Van Kampen [12] [13]. Our formulation enables a systematic
treatment of fluctuations to be carried out. A deterministic equation governing the
dynamics of the system arises as the lowest order contribution in the expansion, and
coincides with the equation obtained in the mean-field approach [11]. The next
order term gives the main contribution of the fluctuations in the form of a linear
Fokker-Planck equation. The probability distribution describing the dynamics of
the system is therefore a Gaussian distribution to this order in the expansion. Higher
order terms are included to provide non-linear corrections to the FPE. the lowest
order non-linear corrections represent fluctuations due to individual agents in the
system. Higher order corrections are crucial when the number of agents is relatively
small and mean-field theory inadequate.

To test the approximation in the case of our agent-resource system, we have
taken a system with two resources and considered time-independent states. Taking
numerical values as in ref. [11] shows full agreement between our exact theoretical
results and the corresponding Monte Carlo simulations performed in ref. [11]. Sen-
sitivity to accuracy of the information available to agents was also studied and the
main observation is that higher uncertainty leads to the suppressing of non-linear
noise effects. In view of the results obtained we conclude that the approximation
works generally well and can therefore be reliably used for time-dependent solutions.

We have modelled time evolution by making two resources with linear pay-offs
compete for the agents; after an initial period of instability the system adopts a
tit-for-tat cycle where one resource dominates the other only to give way to the
competing one after a fixed relaxation time interval. The time-dependent solutions
for a small number of agents (for which first and higher order approximations are
required) have been studied [14]. In that study, more realistic descriptions of the
pay-offs in terms of systems’ measurable properties and more sophisticated evolution
mechanisms are described.

We should note, however, that Van Kampen’s approximation scheme is not
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suited for the treatment of fluctuations in situations involving instabilities or critical
behaviour. In other words, the system size expansion is valid only when there is
one globally stable macroscopic solution (such as a simple competitive system) or
in the immediate vicinity of a locally stable solution. In general, however, a system
with multiple minima requires a different treatment of fluctuations near instability
points. This important issue will be addressed in a separate work.
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